类型serializedsticky
sendBroadcast
false
false
sendOrderedBroadcast
true
false
sendStickyBroadcast
false
true
说完发送广播,接下去就要讲讲讲收广播的操作了。
首先广播发出去之后,肯定会存在一个队列里面来进行处理。
// ActivityManagerService
public ActivityManagerService(Context systemContext, ActivityTaskManagerService atm) {
// ...... 创建了三个队列来保存不同的广播类型
mFgBroadcastQueue = new BroadcastQueue(this, mHandler,
"foreground", foreConstants, false);
mBgBroadcastQueue = new BroadcastQueue(this, mHandler,
"background", backConstants, true);
mOffloadBroadcastQueue = new BroadcastQueue(this, mHandler,
"offload", offloadConstants, true);
mBroadcastQueues[0] = mFgBroadcastQueue;
mBroadcastQueues[1] = mBgBroadcastQueue;
mBroadcastQueues[2] = mOffloadBroadcastQueue;
}
在 ams 的构造函数里面,可以发现这里对广播进行了分类,分别有前台广播,后台广播,Offload 广播,并用一个新的数组将这三个队列放在一起。这里的 handler 是 MainHandler,也就是主线程的。传入是为了获取其 looper 。
BroadcastQueue(ActivityManagerService service, Handler handler,
String name, BroadcastConstants constants, boolean allowDelayBehindServices) {
mService = service; // 广播的 handler 主要是获取到 ams 中 handler looper 来创建的
mHandler = new BroadcastHandler(handler.getLooper());
mQueueName = name;
mDelayBehindServices = allowDelayBehindServices;
mConstants = constants;
mDispatcher = new BroadcastDispatcher(this, mConstants, mHandler, mService);
}
下面就说下处理广播的逻辑:
private final class BroadcastHandler extends Handler {
public BroadcastHandler(Looper looper) {
super(looper, null, true);
}
@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case BROADCAST_INTENT_MSG: {
if (DEBUG_BROADCAST) Slog.v(
TAG_BROADCAST, "Received BROADCAST_INTENT_MSG ["
+ mQueueName + "]"); // 开始处理广播
processNextBroadcast(true);
} break;
case BROADCAST_TIMEOUT_MSG: {
synchronized (mService) {
broadcastTimeoutLocked(true);
}
} break;
}
}
}
可以发现这里调用的是 processNextBroadcast 方法来处理广播。
final void processNextBroadcast(boolean fromMsg) {
synchronized(mService) {
//part1: 处理并行广播
while (mParallelBroadcasts.size() > 0) {
r = mParallelBroadcasts.remove(0);
r.dispatchTime = SystemClock.uptimeMillis();
r.dispatchClockTime = System.currentTimeMillis();
final int N = r.receivers.size();
for (int i=0; i Object target = r.receivers.get(i); //分发广播给已注册的receiver deliverToRegisteredReceiverLocked(r, (BroadcastFilter)target, false); } addBroadcastToHistoryLocked(r);//将广播添加历史统计 } //part2: 处理当前有序广播 do { if (mOrderedBroadcasts.size() == 0) { mService.scheduleAppGcsLocked(); //没有更多的广播等待处理 if (looped) { mService.updateOomAdjLocked(); } return; } r = mOrderedBroadcasts.get(0); //获取串行广播的第一个广播 boolean forceReceive = false; int numReceivers = (r.receivers != null) ? r.receivers.size() : 0; if (mService.mProcessesReady && r.dispatchTime > 0) { long now = SystemClock.uptimeMillis(); if ((numReceivers > 0) && (now > r.dispatchTime + (2*mTimeoutPeriod*numReceivers))) { broadcastTimeoutLocked(false); //当广播处理时间超时,则强制结束这条广播 } } ... if (r.receivers == null || r.nextReceiver >= numReceivers || r.resultAbort || forceReceive) { if (r.resultTo != null) { //处理广播消息消息,调用到onReceive() performReceiveLocked(r.callerApp, r.resultTo, new Intent(r.intent), r.resultCode, r.resultData, r.resultExtras, false, false, r.userId); } cancelBroadcastTimeoutLocked(); //取消BROADCAST_TIMEOUT_MSG消息 addBroadcastToHistoryLocked(r); mOrderedBroadcasts.remove(0); continue; } } while (r == null); //part3: 获取下一个receiver r.receiverTime = SystemClock.uptimeMillis(); if (recIdx == 0) { r.dispatchTime = r.receiverTime; r.dispatchClockTime = System.currentTimeMillis(); } if (!mPendingBroadcastTimeoutMessage) { long timeoutTime = r.receiverTime + mTimeoutPeriod; setBroadcastTimeoutLocked(timeoutTime); //设置广播超时延时消息 } //part4: 处理下条有序广播 ProcessRecord app = mService.getProcessRecordLocked(targetProcess, info.activityInfo.applicationInfo.uid, false); if (app != null && app.thread != null) { app.addPackage(info.activityInfo.packageName, info.activityInfo.applicationInfo.versionCode, mService.mProcessStats); processCurBroadcastLocked(r, app); //[处理串行广播] return; ... } //该receiver所对应的进程尚未启动,则创建该进程 if ((r.curApp=mService.startProcessLocked(targetProcess, info.activityInfo.applicationInfo, true, r.intent.getFlags() | Intent.FLAG_FROM_BACKGROUND, "broadcast", r.curComponent, (r.intent.getFlags()&Intent.FLAG_RECEIVER_BOOT_UPGRADE) != 0, false, false)) == null) { ... return; } } } 对于广播超时处理时机: 首先在part3的过程中setBroadcastTimeoutLocked(timeoutTime) 设置超时广播消息; 然后在part2根据广播处理情况来处理: 当广播接收者等待时间过长,则调用 broadcastTimeoutLocked(false);也就是引爆炸弹 当执行完广播,则调用 cancelBroadcastTimeoutLocked; 也就是拆除炸弹 // BroadcastQueue final void setBroadcastTimeoutLocked(long timeoutTime) { if (! mPendingBroadcastTimeoutMessage) { Message msg = mHandler.obtainMessage(BROADCAST_TIMEOUT_MSG, this); mHandler.sendMessageAtTime(msg, timeoutTime); mPendingBroadcastTimeoutMessage = true; } } 设置定时广播 BROADCAST_TIMEOUT_MSG,即当前往后推 mTimeoutPeriod 时间广播还没处理完毕,则进入广播超时流程。 // BroadcastConstants.java private static final long DEFAULT_TIMEOUT = 10_000; // Timeout period for this broadcast queue public long TIMEOUT = DEFAULT_TIMEOUT; // Unspecified fields retain their current value rather than revert to default 超时时间还是可以设置的 TIMEOUT = mParser.getLong(KEY_TIMEOUT, TIMEOUT); 来看下具体时间的设置,超时设置的是 10 s。 3.2 拆炸弹 broadcast跟service超时机制大抵相同: // 取消超时 final void cancelBroadcastTimeoutLocked() { if (mPendingBroadcastTimeoutMessage) { // 移除消息 mHandler.removeMessages(BROADCAST_TIMEOUT_MSG, this); mPendingBroadcastTimeoutMessage = false; } } 移除广播超时消息 BROADCAST_TIMEOUT_MSG,这样就把诈弹拆除了。 3.3 引爆炸弹 下面看下引爆炸弹的逻辑,前面我们已经介绍了 BroadcastQueue 中的 handler 的实现了,下面直接看下超时的处理逻辑: //fromMsg = true final void broadcastTimeoutLocked(boolean fromMsg) { if (fromMsg) { mPendingBroadcastTimeoutMessage = false; } if (mOrderedBroadcasts.size() == 0) { return; } long now = SystemClock.uptimeMillis(); BroadcastRecord r = mOrderedBroadcasts.get(0); if (fromMsg) { if (mService.mDidDexOpt) { mService.mDidDexOpt = false; long timeoutTime = SystemClock.uptimeMillis() + mTimeoutPeriod; setBroadcastTimeoutLocked(timeoutTime); return; } if (!mService.mProcessesReady) { return; //当系统还没有准备就绪时,广播处理流程中不存在广播超时 } long timeoutTime = r.receiverTime + mTimeoutPeriod; if (timeoutTime > now) { //如果当前正在执行的receiver没有超时,则重新设置广播超时 setBroadcastTimeoutLocked(timeoutTime); return; } } BroadcastRecord br = mOrderedBroadcasts.get(0); if (br.state == BroadcastRecord.WAITING_SERVICES) { //广播已经处理完成,但需要等待已启动service执行完成。当等待足够时间,则处理下一条广播。 br.curComponent = null; br.state = BroadcastRecord.IDLE; processNextBroadcast(false); return; } r.receiverTime = now; //当前BroadcastRecord的anr次数执行加1操作 r.anrCount++; if (r.nextReceiver <= 0) { return; } ... Object curReceiver = r.receivers.get(r.nextReceiver-1); //查询App进程 if (curReceiver instanceof BroadcastFilter) { BroadcastFilter bf = (BroadcastFilter)curReceiver; if (bf.receiverList.pid != 0 && bf.receiverList.pid != ActivityManagerService.MY_PID) { synchronized (mService.mPidsSelfLocked) { app = mService.mPidsSelfLocked.get( bf.receiverList.pid); } } } else { app = r.curApp; } if (app != null) { anrMessage = "Broadcast of " + r.intent.toString(); } if (mPendingBroadcast == r) { mPendingBroadcast = null; } //继续移动到下一个广播接收者 finishReceiverLocked(r, r.resultCode, r.resultData, r.resultExtras, r.resultAbort, false); scheduleBroadcastsLocked(); if (anrMessage != null) { // 发送 anr 消息,带上了 anr 进程信息和 anr 消息 mHandler.post(new AppNotResponding(app, anrMessage)); } } mOrderedBroadcasts已处理完成,则不会anr; 正在执行dexopt,则不会anr; 系统还没有进入ready状态(mProcessesReady=false),则不会anr; 如果当前正在执行的receiver没有超时,则重新设置广播超时,不会anr; 来看下 AppNotResponding 实现: private final class AppNotResponding implements Runnable { private final ProcessRecord mApp; private final String mAnnotation; public AppNotResponding(ProcessRecord app, String annotation) { mApp = app; mAnnotation = annotation; } @Override public void run() { mApp.appNotResponding(null, null, null, null, false, mAnnotation); } } 最终会让 ProcessRecord 来处理 anr,并且其内部持有 ActivityManagerService 实例。 3.4 前台与后台广播超时 前台广播超时为10s,后台广播超时为60s,那么如何区分前台和后台广播呢?来看看AMS的核心逻辑: BroadcastQueue broadcastQueueForIntent(Intent intent) { final boolean isFg = (intent.getFlags() & Intent.FLAG_RECEIVER_FOREGROUND) != 0; return (isFg) ? mFgBroadcastQueue : mBgBroadcastQueue; } mFgBroadcastQueue = new BroadcastQueue(this, mHandler, "foreground", BROADCAST_FG_TIMEOUT, false); mBgBroadcastQueue = new BroadcastQueue(this, mHandler, "background", BROADCAST_BG_TIMEOUT, true); 根据发送广播sendBroadcast(Intent intent)中的intent的flags是否包含 FLAG_RECEIVER_FOREGROUND 来决定把该广播是放入前台广播队列或者后台广播队列,前台广播队列的超时为10s,后台广播队列的超时为60s,默认情况下广播是放入后台广播队列,除非指明加上 FLAG_RECEIVER_FOREGROUND 标识。 后台广播比前台广播拥有更长的超时阈值,同时在广播分发过程遇到后台service的启动(mDelayBehindServices)会延迟分发广播,等待service的完成,因为等待service而导致的广播ANR会被忽略掉;后台广播属于后台进程调度组,而前台广播属于前台进程调度组。简而言之,后台广播更不容易发生ANR,同时执行的速度也会更慢。 另外,只有串行处理的广播才有超时机制,因为接收者是串行处理的,前一个receiver处理慢,会影响后一个receiver;并行广播通过一个循环一次性向所有的receiver分发广播事件,所以不存在彼此影响的问题,则没有广播超时。 前台广播准确来说,是指位于前台广播队列的广播。 四 ContentProvider ContentProvider Timeout是位于”ActivityManager”线程中的AMS.MainHandler收到CONTENT_PROVIDER_PUBLISH_TIMEOUT_MSG消息时触发。 ContentProvider 超时为CONTENT_PROVIDER_PUBLISH_TIMEOUT = 10s. 这个跟前面的Service和BroadcastQueue完全不同, 由 Provider 进程启动过程相关. 4.1 埋炸弹 埋炸弹的过程其实是在进程创建的过程,进程创建后会调用attachApplicationLocked() 进入system_server进程。 // ActivityManagerService private final boolean attachApplicationLocked(IApplicationThread thread, int pid) { ProcessRecord app; if (pid != MY_PID && pid >= 0) { synchronized (mPidsSelfLocked) { app = mPidsSelfLocked.get(pid); // 根据pid获取ProcessRecord } } ... //系统处于ready状态或者该app为FLAG_PERSISTENT进程则为true boolean normalMode = mProcessesReady || isAllowedWhileBooting(app.info); List //app进程存在正在启动中的provider,则超时10s后发送CONTENT_PROVIDER_PUBLISH_TIMEOUT_MSG消息 if (providers != null && checkAppInLaunchingProvidersLocked(app)) { Message msg = mHandler.obtainMessage(CONTENT_PROVIDER_PUBLISH_TIMEOUT_MSG); msg.obj = app; mHandler.sendMessageDelayed(msg, CONTENT_PROVIDER_PUBLISH_TIMEOUT); } thread.bindApplication(...); ... } // 10sstatic final int CONTENT_PROVIDER_PUBLISH_TIMEOUT = 10*1000; 10s 之后引爆该炸弹. 4.2 拆炸弹 当 provider 成功 publish 之后,便会拆除该炸弹. public final void publishContentProviders(IApplicationThread caller, List ... synchronized (this) { final ProcessRecord r = getRecordForAppLocked(caller); final int N = providers.size(); for (int i = 0; i < N; i++) { ContentProviderHolder src = providers.get(i); ... ContentProviderRecord dst = r.pubProviders.get(src.info.name); if (dst != null) { ComponentName comp = new ComponentName(dst.info.packageName, dst.info.name); mProviderMap.putProviderByClass(comp, dst); //将该provider添加到mProviderMap String names[] = dst.info.authority.split(";"); for (int j = 0; j < names.length; j++) { mProviderMap.putProviderByName(names[j], dst); } int launchingCount = mLaunchingProviders.size(); int j; boolean wasInLaunchingProviders = false; for (j = 0; j < launchingCount; j++) { if (mLaunchingProviders.get(j) == dst) { //将该provider移除mLaunchingProviders队列 mLaunchingProviders.remove(j); wasInLaunchingProviders = true; j--; launchingCount--; } } //成功pubish则移除该消息 if (wasInLaunchingProviders) { mHandler.removeMessages(CONTENT_PROVIDER_PUBLISH_TIMEOUT_MSG, r); } synchronized (dst) { dst.provider = src.provider; dst.proc = r; //唤醒客户端的wait等待方法 dst.notifyAll(); } ... } } } } 4.3 引爆炸弹 在system_server进程中有一个Handler线程, 名叫”ActivityManager”.当倒计时结束便会向该Handler线程发送 一条信息CONTENT_PROVIDER_PUBLISH_TIMEOUT_MSG. MainHandler 是 AMS 的内部类。 final class MainHandler extends Handler { public void handleMessage(Message msg) { switch (msg.what) { case CONTENT_PROVIDER_PUBLISH_TIMEOUT_MSG: { ... ProcessRecord app = (ProcessRecord)msg.obj; synchronized (ActivityManagerService.this) { //【见小节4.3.2】 processContentProviderPublishTimedOutLocked(app); } } break; ... } ... } } private final void processContentProviderPublishTimedOutLocked(ProcessRecord app) { //[见4.3.3] cleanupAppInLaunchingProvidersLocked(app, true); //[见小节4.3.4] removeProcessLocked(app, false, true, "timeout publishing content providers"); } boolean cleanupAppInLaunchingProvidersLocked(ProcessRecord app, boolean alwaysBad) { boolean restart = false; for (int i = mLaunchingProviders.size() - 1; i >= 0; i--) { ContentProviderRecord cpr = mLaunchingProviders.get(i); if (cpr.launchingApp == app) { if (!alwaysBad && !app.bad && cpr.hasConnectionOrHandle()) { restart = true; } else { //移除死亡的provider removeDyingProviderLocked(app, cpr, true); } } } return restart; } removeDyingProviderLocked()的功能跟进程的存活息息相关:详见ContentProvider引用计数 []小节4.5] 对于stable类型的provider(即conn.stableCount > 0),则会杀掉所有跟该provider建立stable连接的非persistent进程. 对于unstable类的provider(即conn.unstableCount > 0),并不会导致client进程被级联所杀. 五、input超时机制 input的超时检测机制跟service、broadcast、provider截然不同,为了更好的理解input过程先来介绍两个重要线程的相关工作: InputReader线程负责通过EventHub(监听目录/dev/input)读取输入事件,一旦监听到输入事件则放入到InputDispatcher的mInBoundQueue队列,并通知其处理该事件; InputDispatcher线程负责将接收到的输入事件分发给目标应用窗口,分发过程使用到3个事件队列: mInBoundQueue用于记录InputReader发送过来的输入事件; outBoundQueue用于记录即将分发给目标应用窗口的输入事件; waitQueue用于记录已分发给目标应用,且应用尚未处理完成的输入事件; input的超时机制并非时间到了一定就会爆炸,而是处理后续上报事件的过程才会去检测是否该爆炸,所以更像是扫雷的过程,具体如下图所示。 InputReader线程通过EventHub监听底层上报的输入事件,一旦收到输入事件则将其放至mInBoundQueue队列,并唤醒InputDispatcher线程 InputDispatcher开始分发输入事件,设置埋雷的起点时间。先检测是否有正在处理的事件(mPendingEvent),如果没有则取出mInBoundQueue队头的事件,并将其赋值给mPendingEvent,且重置ANR的timeout;否则不会从mInBoundQueue中取出事件,也不会重置timeout。然后检查窗口是否就绪(checkWindowReadyForMoreInputLocked),满足以下任一情况,则会进入扫雷状态(检测前一个正在处理的事件是否超时),终止本轮事件分发,否则继续执行步骤3。当应用窗口准备就绪,则将mPendingEvent转移到outBoundQueue队列 对于按键类型的输入事件,则outboundQueue或者waitQueue不为空, 对于非按键的输入事件,则waitQueue不为空,且等待队头时间超时500ms 当outBoundQueue不为空,且应用管道对端连接状态正常,则将数据从outboundQueue中取出事件,放入waitQueue队列 InputDispatcher通过socket告知目标应用所在进程可以准备开始干活 App在初始化时默认已创建跟中控系统双向通信的socketpair,此时App的包工头(main线程)收到输入事件后,会层层转发到目标窗口来处理 包工头完成工作后,会通过socket向中控系统汇报工作完成,则中控系统会将该事件从waitQueue队列中移除。 input超时机制为什么是扫雷,而非定时爆炸呢?是由于对于input来说即便某次事件执行时间超过timeout时长,只要用户后续在没有再生成输入事件,则不会触发ANR。 这里的扫雷是指当前输入系统中正在处理着某个耗时事件的前提下,后续的每一次input事件都会检测前一个正在处理的事件是否超时(进入扫雷状态),检测当前的时间距离上次输入事件分发时间点是否超过timeout时长。如果前一个输入事件,则会重置ANR的timeout,从而不会爆炸。 到这里,关于 service ,广播,provider 的 anr 原因都讲清楚了。下面就看看是如何对 anr 信息进行收集的。 六、appNotResponding处理流程 不管是啥 anr ,最终都会调用到 ProcessRecord 的 appNotResponding 方法,下面来看看这个方法里面具体都做了啥: // ProcessRecord.java void appNotResponding(String activityShortComponentName, ApplicationInfo aInfo, String parentShortComponentName, WindowProcessController parentProcess, boolean aboveSystem, String annotation) { ArrayList SparseArray mWindowProcessController.appEarlyNotResponding(annotation, () -> kill("anr", true)); // anr 时间,实际上发生 anr 的时候,此时收集的运行堆栈有可能并不是引起 anr 的堆栈 long anrTime = SystemClock.uptimeMillis(); if (isMonitorCpuUsage()) { mService.updateCpuStatsNow(); } synchronized (mService) { // PowerManager.reboot() can block for a long time, so ignore ANRs while shutting down. 关机时发生 anr 会被忽略,因为可能会引起长时间阻塞 if (mService.mAtmInternal.isShuttingDown()) { Slog.i(TAG, "During shutdown skipping ANR: " + this + " " + annotation); return; } else if (isNotResponding()) { Slog.i(TAG, "Skipping duplicate ANR: " + this + " " + annotation); return; } else if (isCrashing()) { Slog.i(TAG, "Crashing app skipping ANR: " + this + " " + annotation); return; } else if (killedByAm) { Slog.i(TAG, "App already killed by AM skipping ANR: " + this + " " + annotation); return; } else if (killed) { Slog.i(TAG, "Skipping died app ANR: " + this + " " + annotation); return; } // In case we come through here for the same app before completing // this one, mark as anring now so we will bail out. 这样可以避免重复进入 setNotResponding(true); // Log the ANR to the event log. 记录 anr 到 eventlog EventLog.writeEvent(EventLogTags.AM_ANR, userId, pid, processName, info.flags, annotation); // Dump thread traces as quickly as we can, starting with "interesting" processes. 将当前进程添加到 firstPids 中 firstPids.add(pid); // Don't dump other PIDs if it's a background ANR if (!isSilentAnr()) { int parentPid = pid; if (parentProcess != null && parentProcess.getPid() > 0) { parentPid = parentProcess.getPid(); } if (parentPid != pid) firstPids.add(parentPid); // 将system_server进程添加到firstPids if (MY_PID != pid && MY_PID != parentPid) firstPids.add(MY_PID); for (int i = getLruProcessList().size() - 1; i >= 0; i--) { ProcessRecord r = getLruProcessList().get(i); if (r != null && r.thread != null) { int myPid = r.pid; if (myPid > 0 && myPid != pid && myPid != parentPid && myPid != MY_PID) { if (r.isPersistent()) { firstPids.add(myPid); // 将persistent进程添加到firstPids if (DEBUG_ANR) Slog.i(TAG, "Adding persistent proc: " + r); } else if (r.treatLikeActivity) { firstPids.add(myPid); // 使用了 BIND_TREAT_LIKE_ACTIVITY if (DEBUG_ANR) Slog.i(TAG, "Adding likely IME: " + r); } else { lastPids.put(myPid, Boolean.TRUE); // 其他进程添加到lastPids if (DEBUG_ANR) Slog.i(TAG, "Adding ANR proc: " + r); } } } } } } // Log the ANR to the main log. 记录 anr 到 mainlog StringBuilder info = new StringBuilder(); info.setLength(0); info.append("ANR in ").append(processName); if (activityShortComponentName != null) { info.append(" (").append(activityShortComponentName).append(")"); } info.append("\n"); info.append("PID: ").append(pid).append("\n"); if (annotation != null) { info.append("Reason: ").append(annotation).append("\n"); } if (parentShortComponentName != null && parentShortComponentName.equals(activityShortComponentName)) { info.append("Parent: ").append(parentShortComponentName).append("\n"); } // 创建 cpu tracker 对象 ProcessCpuTracker processCpuTracker = new ProcessCpuTracker(true); // don't dump native PIDs for background ANRs unless it is the process of interest String[] nativeProcs = null; if (isSilentAnr()) { for (int i = 0; i < NATIVE_STACKS_OF_INTEREST.length; i++) { if (NATIVE_STACKS_OF_INTEREST[i].equals(processName)) { nativeProcs = new String[] { processName }; break; } } } else { nativeProcs = NATIVE_STACKS_OF_INTEREST; } // 获取 native 进程 int[] pids = nativeProcs == null ? null : Process.getPidsForCommands(nativeProcs); ArrayList if (pids != null) { nativePids = new ArrayList<>(pids.length); for (int i : pids) { nativePids.add(i); } } // For background ANRs, don't pass the ProcessCpuTracker to // avoid spending 1/2 second collecting stats to rank lastPids. 收集堆栈信息 File tracesFile = ActivityManagerService.dumpStackTraces(firstPids, (isSilentAnr()) ? null : processCpuTracker, (isSilentAnr()) ? null : lastPids, nativePids); String cpuInfo = null; // 添加 cpu 信息 if (isMonitorCpuUsage()) { mService.updateCpuStatsNow(); synchronized (mService.mProcessCpuTracker) { cpuInfo = mService.mProcessCpuTracker.printCurrentState(anrTime); } info.append(processCpuTracker.printCurrentLoad()); info.append(cpuInfo); } info.append(processCpuTracker.printCurrentState(anrTime)); Slog.e(TAG, info.toString()); if (tracesFile == null) { // There is no trace file, so dump (only) the alleged culprit's threads to the log Process.sendSignal(pid, Process.SIGNAL_QUIT); } StatsLog.write(StatsLog.ANR_OCCURRED, uid, processName, activityShortComponentName == null ? "unknown": activityShortComponentName, annotation, (this.info != null) ? (this.info.isInstantApp() ? StatsLog.ANROCCURRED__IS_INSTANT_APP__TRUE : StatsLog.ANROCCURRED__IS_INSTANT_APP__FALSE) : StatsLog.ANROCCURRED__IS_INSTANT_APP__UNAVAILABLE, isInterestingToUserLocked() ? StatsLog.ANROCCURRED__FOREGROUND_STATE__FOREGROUND : StatsLog.ANROCCURRED__FOREGROUND_STATE__BACKGROUND, getProcessClassEnum(), (this.info != null) ? this.info.packageName : ""); final ProcessRecord parentPr = parentProcess != null ? (ProcessRecord) parentProcess.mOwner : null; // 将traces文件 和 CPU使用率信息保存到dropbox,即data/system/dropbox目录 mService.addErrorToDropBox("anr", this, processName, activityShortComponentName, parentShortComponentName, parentPr, annotation, cpuInfo, tracesFile, null); if (mWindowProcessController.appNotResponding(info.toString(), () -> kill("anr", true), () -> { synchronized (mService) { mService.mServices.scheduleServiceTimeoutLocked(this); } })) { return; } synchronized (mService) { // mBatteryStatsService can be null if the AMS is constructed with injector only. This // will only happen in tests. if (mService.mBatteryStatsService != null) { mService.mBatteryStatsService.noteProcessAnr(processName, uid); } // 杀死后台 anr 的进程 if (isSilentAnr() && !isDebugging()) { kill("bg anr", true); return; } // Set the app's notResponding state, and look up the errorReportReceiver makeAppNotRespondingLocked(activityShortComponentName, annotation != null ? "ANR " + annotation : "ANR", info.toString()); // mUiHandler can be null if the AMS is constructed with injector only. This will only // happen in tests. if (mService.mUiHandler != null) { // Bring up the infamous App Not Responding dialog Message msg = Message.obtain(); msg.what = ActivityManagerService.SHOW_NOT_RESPONDING_UI_MSG; msg.obj = new AppNotRespondingDialog.Data(this, aInfo, aboveSystem); // 发送 anr 弹窗信息 mService.mUiHandler.sendMessage(msg); } } } /** * Unless configured otherwise, swallow ANRs in background processes & kill the process. * Non-private access is for tests only. 如果是后台 ANR 会被吞噬,不会提示 anr, */@VisibleForTestingboolean isSilentAnr() { return !getShowBackground() && !isInterestingForBackgroundTraces();} 当发生ANR时, 会按顺序依次执行: 输出ANR Reason信息到EventLog. 也就是说ANR触发的时间点最接近的就是EventLog中输出的am_anr信息; 收集并输出重要进程列表中的各个线程的traces信息,该方法较耗时; 【见小节2】 输出当前各个进程的CPU使用情况以及CPU负载情况; 将traces文件和 CPU使用情况信息保存到dropbox,即data/system/dropbox目录 根据进程类型,来决定直接后台杀掉,还是弹框告知用户. ANR输出重要进程的traces信息,这些进程包含: firstPids队列:第一个是ANR进程,第二个是system_server,剩余是所有persistent进程; Native队列:是指/system/bin/目录的mediaserver,sdcard 以及surfaceflinger进程; lastPids队列: 是指mLruProcesses中的不属于firstPids的所有进程。 下面看下收集各进程堆栈信息逻辑: // AMS /** * If a stack trace dump file is configured, dump process stack traces. * @param firstPids of dalvik VM processes to dump stack traces for first * @param lastPids of dalvik VM processes to dump stack traces for last * @param nativePids optional list of native pids to dump stack crawls */ public static File dumpStackTraces(ArrayList ProcessCpuTracker processCpuTracker, SparseArray ArrayList ArrayList Slog.i(TAG, "dumpStackTraces pids=" + lastPids + " nativepids=" + nativePids); // Measure CPU usage as soon as we're called in order to get a realistic sampling // of the top users at the time of the request. if (processCpuTracker != null) { processCpuTracker.init(); try { Thread.sleep(200); // 等待 200ms } catch (InterruptedException ignored) { } // 测量CPU使用情况 processCpuTracker.update(); // We'll take the stack crawls of just the top apps using CPU. 收集 5 个最高使用 cpu 的 进程 final int N = processCpuTracker.countWorkingStats(); extraPids = new ArrayList<>(); for (int i = 0; i < N && extraPids.size() < 5; i++) { ProcessCpuTracker.Stats stats = processCpuTracker.getWorkingStats(i); if (lastPids.indexOfKey(stats.pid) >= 0) { if (DEBUG_ANR) Slog.d(TAG, "Collecting stacks for extra pid " + stats.pid); extraPids.add(stats.pid); } else { Slog.i(TAG, "Skipping next CPU consuming process, not a java proc: " + stats.pid); } } } final File tracesDir = new File(ANR_TRACE_DIR); // Each set of ANR traces is written to a separate file and dumpstate will process // all such files and add them to a captured bug report if they're recent enough. 每一个 anr 都保存在单独的文件中的 maybePruneOldTraces(tracesDir); // NOTE: We should consider creating the file in native code atomically once we've // gotten rid of the old scheme of dumping and lot of the code that deals with paths // can be removed. 创建 anr 文件 File tracesFile = createAnrDumpFile(tracesDir); if (tracesFile == null) { return null; } // 收集 anr 堆栈 dumpStackTraces(tracesFile.getAbsolutePath(), firstPids, nativePids, extraPids); return tracesFile; } // 创建 anr 文件 private static synchronized File createAnrDumpFile(File tracesDir) { if (sAnrFileDateFormat == null) { sAnrFileDateFormat = new SimpleDateFormat("yyyy-MM-dd-HH-mm-ss-SSS"); } final String formattedDate = sAnrFileDateFormat.format(new Date()); // anr 文件名是 anr_加上时间 final File anrFile = new File(tracesDir, "anr_" + formattedDate); ...return anrFile; } // 收集堆栈逻辑 public static void dumpStackTraces(String tracesFile, ArrayList ArrayList Slog.i(TAG, "Dumping to " + tracesFile); // We don't need any sort of inotify based monitoring when we're dumping traces via // tombstoned. Data is piped to an "intercept" FD installed in tombstoned so we're in full // control of all writes to the file in question. // We must complete all stack dumps within 20 seconds. 在 20s 里面完成堆栈收集工作,未完成也会直接退出 long remainingTime = 20 * 1000; // First collect all of the stacks of the most important pids. 收集最重要的几个进程的信息 if (firstPids != null) { int num = firstPids.size(); for (int i = 0; i < num; i++) { Slog.i(TAG, "Collecting stacks for pid " + firstPids.get(i)); final long timeTaken = dumpJavaTracesTombstoned(firstPids.get(i), tracesFile, remainingTime); remainingTime -= timeTaken; if (remainingTime <= 0) { Slog.e(TAG, "Aborting stack trace dump (current firstPid=" + firstPids.get(i) + "); deadline exceeded."); return; } } } // Next collect the stacks of the native pids 收集 native 堆栈 if (nativePids != null) { for (int pid : nativePids) { Slog.i(TAG, "Collecting stacks for native pid " + pid); final long nativeDumpTimeoutMs = Math.min(NATIVE_DUMP_TIMEOUT_MS, remainingTime); final long start = SystemClock.elapsedRealtime(); Debug.dumpNativeBacktraceToFileTimeout( pid, tracesFile, (int) (nativeDumpTimeoutMs / 1000)); final long timeTaken = SystemClock.elapsedRealtime() - start; remainingTime -= timeTaken; ... 超时则停止收集 } } // Lastly, dump stacks for all extra PIDs from the CPU tracker. 最后是前面最高的 5 个 if (extraPids != null) { for (int pid : extraPids) { Slog.i(TAG, "Collecting stacks for extra pid " + pid); final long timeTaken = dumpJavaTracesTombstoned(pid, tracesFile, remainingTime); remainingTime -= timeTaken; ... } } Slog.i(TAG, "Done dumping"); } 该方法的主要功能,依次输出: 收集firstPids进程的stacks; 第一个是发生ANR进程; 第二个是system_server; mLruProcesses中所有的persistent进程; 收集Native进程的stacks;(dumpNativeBacktraceToFile) 依次是mediaserver,sdcard,surfaceflinger进程; 收集lastPids进程的stacks;; 依次输出CPU使用率top 5的进程; 七、总结 当出现ANR时,都是调用到AMS.appNotResponding()方法,当然这里介绍的 provider 例外. Timeout时长 对于前台服务,则超时为SERVICE_TIMEOUT = 20s; 对于后台服务,则超时为SERVICE_BACKGROUND_TIMEOUT = 200s 对于前台广播,则超时为BROADCAST_FG_TIMEOUT = 10s; 对于后台广播,则超时为BROADCAST_BG_TIMEOUT = 60s; ContentProvider超时为CONTENT_PROVIDER_PUBLISH_TIMEOUT = 10s; 超时检测 Service超时检测机制: 超过一定时间没有执行完相应操作来触发移除延时消息,则会触发anr; BroadcastReceiver超时检测机制: 有序广播的总执行时间超过 2* receiver个数 * timeout时长,则会触发anr; 有序广播的某一个receiver执行过程超过 timeout时长,则会触发anr; 另外: 对于Service, Broadcast, Input发生ANR之后,最终都会调用AMS.appNotResponding; 对于provider,在其进程启动时publish过程可能会出现ANR, 则会直接杀进程以及清理相应信息,而不会弹出ANR的对话框. appNotRespondingViaProvider()过程会走appNotResponding(), 这个就不介绍了,很少使用,由用户自定义超时时间. 最后,真诚感谢 gityuan 的博客。